Mathematical notation 2


#1

Test round number 2

\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}
x_i^2
\left(\frac{\sqrt x}{y^3}\right)
\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr)

Matrix

\begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix}

\left[ \begin{array}{cc|c} 1&2&3\\ 4&5&6 \end{array} \right]

\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\ & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right) \end{align}

Example

**Example** Example
f(n) =
\begin{cases}
\frac{n}{2},  & \text{if $n$ is even} \\[2ex]
3n+1, & \text{if $n$ is odd}
\end{cases}
f(n) = \begin{cases} \frac{n}{2}, & \text{if $n$ is even} \\[2ex] 3n+1, & \text{if $n$ is odd} \end{cases}

#2

It uses LaTex for anyone wondering:

It’s worth learning