Lesson 9: Theory of Intelligence

Further Study

Additional information about the speakers’ research and publications can be found at their websites:

Advani, M., and S. Ganguli. This resource may not render correctly in a screen reader.“Statistical Mechanics of High-Dimensional Inference.” (PDF) (2016).

Anselmi, F., J. Z. Leibo, et al. “Unsupervised Learning of Invariant Representations.” Theoretical Computer Science 633 (2016): 112–21.

Babadi, B., and H. Sompolinsky. This resource may not render correctly in a screen reader.“Sparseness and Expansion in Sensory Representations.”(PDF - 2.8MB) Neuron 83 (2014): 1213–26.

Gao, P., and S. Ganguli. “On Simplicity and Complexity in the Brave New World of Large-Scale Neuroscience.” (PDF) Current Opinion in Neurobiology 32 (2015): 148–55.

Poggio, T. This resource may not render correctly in a screen reader.“Deep Learning: Mathematics and Neuroscience.” (PDF - 1.2MB) Center for Brains Minds & Machines Views & Reviews (2016).

Saxe, A., J. McClelland, et al. This resource may not render correctly in a screen reader.“Learning Hierarchical Category Structure in Deep Neural Networks.” (PDF) Proceedings 35th Annual Meeting of the Cognitive Science Society (2013): 1271–76.

Serre, T., G. Kreiman, et al.This resource may not render correctly in a screen reader. “A Quantitative Theory of Immediate Visual Recognition.” (PDF) Progress in Brain Research 165 (2007): 33–56.

Sompolinsky, H. “Computational Neuroscience: Beyond the Local Circuit.” (PDF) Current Opinion in Neurobiology 25 (2014): 1–6.