Lesson 4: Visual Intelligence


#1

How do we obtain a rich understanding of the world from visual input? What visual cues enable us to recognize objects from their structure or texture, or to remember objects and scenes that we have encountered before? What is the future for intelligent systems that can drive a car or assist the visually impaired? This unit explores these questions from the perspectives of perception and cognition, brain imaging, and the engineering of intelligent systems.

From very rudimentary visual abilities present at birth, infants learn to recognize complex objects such as hands and how to detect the direction of gaze of a caregiver. Shimon Ullman’s first lecture shows how such capabilities can be learned from a stream of natural videos and without supervision.

Shimon Ullman’s second lecture explores the minimal configurations of image content needed to recognize an object category, revealing a human capability that far surpasses that of current recognition systems and yielding insights into the brain mechanisms underlying visual recognition.

image

What makes an image memorable? Using insights from perceptual experiments, fMRI studies, and computational modelling, Aude Oliva has identified some key factors that determine visual memorability.

(Image based on Isola, Phillip, Jianxiong Xiao, Devi Parikh, Antonio Torralba, and Aude Oliva. “What Makes a Photograph Memorable?” IEEE Trans. Pattern Anal. Mach. Intell . 36, no. 7 (July 2014): 1469–1482. From author’s final manuscript, license CC BY-NC-SA.)

Understanding what makes an image memorable can shed light on the representations of visual knowledge in the brain and neural basis of memory loss, and is important for applications such as data visualization and image retrieval. From Aude Oliva, you will learn about the visual cues that govern memorability, revealed from behavioural experiments, computational models, and brain imaging studies.

Guest speaker Eero Simoncelli presents a physiologically inspired model of the analysis of visual textures by the ventral pathway of the brain. The synthesis of texture metamers, stimuli that are physically different but appear the same to a human observer, provide a powerful tool for probing the underlying brain mechanisms.

We are rapidly approaching a time of fully autonomous vehicles and intelligent systems to assist the blind. Guest speaker Amnon Shashua shows how advanced computer vision technology created by Mobileye will change transportation, and how wearable devices created by OrCam can profoundly impact the lives of the visually impaired.

Unit Activities

Useful Background

  • Introductions to machine learning, neuroscience, cognitive science

Syllabus: Brains, Minds & Machines
#2

Lesson 4.1: Development of Visual Concepts


Description: Visual understanding evolves from simple innate biases to complex visual concepts. How computer models can learn to recognize hands and follow gaze by leveraging simple motion and pattern detection processes present in early infancy.

Instructor: Shimon Ullman


Click here for the lesson transcript

Click here for the lesson slides


Syllabus: Brains, Minds & Machines
#3

Lesson 4.2: Atoms of Recognition


Description: Human ability to recognize object categories from minimal content in natural image fragments, inadequacy of current computer vision models to capture this ability, discerning the minimal features needed to make inferences for object recognition.

Instructor: Shimon Ullman


Click here for the lesson transcript

Click here for the lesson slides


Syllabus: Brains, Minds & Machines
#4

Lesson 4.3: Predicting Visual Memory


Description: What makes an image memorable? Discussing visual memory experiments, consistency of memorability across observers, memorability of images, neural framework for memorability, and biologically inspired deep neural network model of object recognition.

Instructor: Aude Oliva


Click here for the lesson transcript

Click here for the lesson slides


Syllabus: Brains, Minds & Machines
#5

Seminar 4.1: Probing Sensory Representations


Description: Cognitive processing of sensory input, probing sensory representations with metameric stimuli, perceptual color matching, texture discrimination, Julesz texture model, modeling physiological mechanisms of texture processing in the ventral visual pathway.

Instructor: Eero Simoncelli


Click here for the lesson transcript

Click here for the lesson slides


Syllabus: Brains, Minds & Machines
#6

Seminar 4.2: Applications of Vision


Description: Using computer vision to develop transportation technology. Covers the technology and function of autonomous vehicles, visual recognition and processing, collision avoidance and other obstacles to achieving fully autonomous, self-driving vehicles.

Instructor: Amnon Shashua


Click here for the lesson transcript

Click here for the lesson slides


Syllabus: Brains, Minds & Machines
#7

Further Study

Additional information about the speakers’ research and publications can be found at their websites:

Bylinskii, Z., P. Isola, et al. This resource may not render correctly in a screen reader.“Intrinsic and Extrinsic Effects on Image Variability.” (PDF - 4.8MB) Vision Research 116 Part B (2015): 165–78.

Cichy, R. M., A. Khosla, et al. “Dynamics of Scene Representations in the Human Brain Revealed by Magnetoencephalography and Deep Neural Networks.” NeuroImage (2016). (in press)

Freeman, J., and E. P. Simoncelli. This resource may not render correctly in a screen reader.“Metamers of the Ventral Stream.” (PDF - 2.0MB) Nature Neuroscience 14, no. 9 (2011): 1195–1201.

Freeman, J., C. M. Ziemba, et al. This resource may not render correctly in a screen reader.“A Functional and Perceptual Signature of the Second Visual Area in Primates.” (PDF - 1.5MB) Nature Neuroscience 16, no. 7 (2013): 974–81.

Portilla, J., and E. P. Simoncelli. This resource may not render correctly in a screen reader.“A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients.” (PDF - 2.0MB) International Journal of Computer Vision 40, no. 1 (2000): 49–71.

Ullman, S., L. Assif, et al. This resource may not render correctly in a screen reader.“Atoms of Recognition in Human and Computer Vision.” (PDF) Proceedings of the National Academy of Sciences 113, no. 10 (2016): 2744–49.

Ullman, S., D. Harari, et al. This resource may not render correctly in a screen reader.“From Simple Innate Biases to Complex Visual Concepts.” (PDF - 2.5MB) Proceedings of the National Academy of Sciences 109, no. 44 (2012): 18215–20.

Zhou, B., A. Khosla, et al. This resource may not render correctly in a screen reader.“Object Detectors Emerge in Deep Scene CNNs.” (PDF - 7.0MB) International Conference on Learning Representations (2015).


Syllabus: Brains, Minds & Machines